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We study the effect of quantum fluctuations on the critical behavior of the Ising ferromagnetic phase
transitions that do not belong to the mean-field universality class. A model system is considered, in which Ising
spins are placed on the nodes of a scale-free network. Our Monte Carlo analysis shows that the critical
exponents differ from those of mean-field phase transitions when degree exponent � is in the range 3��
�5. This confirms earlier analytic calculations based on ansatzes and approximation methods. As we apply
quantum fluctuations by means of a magnetic field perpendicular to the Ising spin direction, the transition
temperature Tc decreases with increasing magnetic field strength. We find, however, that the quantum fluctua-
tions do not alter the critical exponents and the universality class remains unchanged.
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I. INTRODUCTION

The Ising model is one of the most popular models used
for the study of collective behavior and critical phenomena.
It is simple enough to provide clear physical insights, yet its
behavior is very rich and complex. As in all other systems,
the critical behavior of an Ising system is independent of
microscopic details of the model, and its universality class is
determined by the topology and symmetry of the system.

Recently, there has been much interest in the study of
Ising systems where the spins are placed on nodes of com-
plex networks, such as scale-free �1–3� and small-world net-
works �4–6�. In those novel systems, ferromagnetically in-
teracting spins are in an ordered phase at low temperatures
and may undergo a ferromagnetic-paramagnetic second-
order phase transition as temperature increases. In Watts-
Strogatz-type small-world networks �7�, this phase transition
is characterized by the typical critical exponents of the mean-
field universality class. Even more interesting is the Ising
model in scale-free networks. One of the important charac-
teristics of a network is the degree distribution function P�k�,
where k is the number of links of a node. For a scale-free
network, it takes a power-law form P�k��k−� for large k.
Analytic calculations based on a replica method with the
replica symmetric ansatz �1� and an approximation of local
treelike network �2� have been previously performed to ob-
tain the transition temperature and the critical exponents of
the Ising model in scale-free networks. They have predicted
that the transition temperature depends on the moments of
the degree distribution. This has also been confirmed by a
Monte Carlo simulation calculation �3�. On the other hand,
the critical exponents are independent of details of the net-
work and is solely determined by the degree exponent �. For
example, the transition is of a mean-field type, if ��5. How-
ever, if 3���5, the critical exponents take nontrivial val-
ues that depend only on k. The exponents have been analyti-
cally calculated in Refs. �1,2� within their ansatz and
approximation schemes. Furthermore, if ��3, there is no

phase transition in the thermodynamic limit and the spin sys-
tem is always ferromagnetically ordered at all finite tempera-
tures �1–3�. The first part of this Brief Report is devoted to
numerical calculations of the critical exponents when
3���5. It would provide a nontrivial test of the validity of
the methods used in the analytic calculations �1,2�.

In another line of research, there have been attempts to
apply quantum fluctuations to Ising systems in complex net-
works �8,9�. One motivation for studying the effect of quan-
tum fluctuations in those systems comes from the recent in-
terest in quantum computing. A quantum computer consists
of spins �or pseudospins derived from two-state systems� in-
teracting with one another through network �10�. It is impor-
tant to study the effect of quantum fluctuations because in
random networks, it has been shown that imperfect control
of local quantum spins may cause computation errors that
grow fast with the number of qubits �11�. Since quantum
fluctuations tend to weaken ferromagnetic ordering, the criti-
cal temperature is expected to get reduced in their presence.

Another motivation comes from the following nontrivial
question: other than topology and symmetry, what affects the
universality class of critical behavior? Early studies of Ising
model in small-world and scale-free networks have shown
that if the universality class is a mean-field type, the critical
exponents are robust even in the presence of quantum fluc-
tuations �8,9�. Yet whether quantum fluctuations would affect
the critical exponents of nonmean-field universality classes is
a nontrivial question and has yet to be tested. We will try to
answer this question in the second part of this Brief Report.

II. NUMERICAL TEST OF CRITICAL EXPONENTS

What define our scale-free network are the degree expo-
nent �, the number of nodes N, and the average degree kav.
The degree distribution is given by

P�k� = �0, if k � kmin

P0, if k = kmin

ck−�, if k � kmin
� . �1�

The parameters kmin, P0, and c are determined from the fol-
lowing conditions:*hyi@ssu.ac.kr
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�
k=1

�

P�k� = 1 and �
k=1

�

kP�k� = kav. �2�

Because kmin must be an integer, we introduced a continuous
parameter P0 to ensure that the above conditions are satisfied
for any value of the continuous variable kav. The value of P0
is set to be no greater than but as close as possible to ckmin

−� .
Once P�k� is determined, we construct our network in the
following way. For each node, we probabilistically determine
its degree k according to the distribution P�k�. Although the
total number of degrees is not fixed in this method, it ap-
proaches Nkav as we perform the simulation over many net-
works. Now imagine that each node carries as many “arms”
as its degree. Then we connect all nodes to a single cluster
by repeatedly making links between two randomly chosen
arms, one of which is already in the cluster and the other not
yet in the cluster. After all nodes are connected to the cluster,
any remaining unconnected arms are randomly connected
with one another until none is left �12�. In the whole process,
we have made sure that no two nodes are connected by more
than one link and no link connects a node to itself. We have
checked that the joint probability P�k ,k�� for degrees of di-
rectly linked nodes satisfies the condition for uncorrelated
networks; i.e., P�k ,k��=kk�P�k�P�k�� / �k	2 �13�.

The Ising Hamiltonian in this scale-free network is de-
fined as

H = − �
i�j

Jij�i
z� j

z �3�

where �i
z is the z component of the Pauli-spin matrix at node

i. Two spins interact with each other if and only if they are
connected in the network. In terms of coupling constant, it
may be written as

Jij = 
J , if nodes i and j are connected

0, otherwise
� . �4�

For simplicity, we have used a constant ferromagnetic cou-
pling �J�0� for all connected spin pairs.

For Monte Carlo simulations, we have used the Wolff
cluster algorithm, which is known to be especially efficient
near the critical temperature �14�. The ferromagnetic-
paramagnetic phase-transition temperature Tc was deter-
mined via finite-size scaling. Following standard procedures
�15�, we computed the fourth-order Binder cumulant of mag-
netization m

UN�T� = 1 −
�m4	

3�m2	2 �5�

for several systems with different numbers of spins N. Here,
�¯ 	 denotes both thermal and network averages. The num-
ber of Monte Carlo steps per network and the number of
averaged network configurations were not predetermined,
but the simulation was repeated until desired accuracies in all
measured physical quantities were achieved. Typically, about
107�108 cluster flips were performed per network for about
1000 networks for each parameter set in order to obtain the
accuracy required in the current analysis. As shown in Fig. 1,
all curves cross at one single point, which is a characteristic

of a critical point. For ��3, we find that there is
always a transition between a low- temperature ordered
�ferromagnetic� phase and a high-temperature disordered
�paramagnetic� phase at finite Tc. All of our numerical results
of Tc are consistent with earlier analytic formula
Tc=−2J / ln�1−2�k	 / �k2	� �1,2�. For convenience, we will use
the temperature scale in which kB=1 throughout this Brief
Report.

The critical exponents are then obtained by fitting various
physical quantities to the following finite-size scaling
formulas:

UN�T,N� = Ũ��T − Tc�N1/	̄� , �6�

c�T,N� = N
/	̄c̃��T − Tc�N1/	̄� , �7�

m�T,N� = N−�/	̄m̃��T − Tc�N1/	̄� , �8�

��T,N� = N�̄/	̄�̃��T − Tc�N1/	̄� , �9�

where c, m, and � are specific heat, magnetization, and mag-
netic susceptibility, respectively. Due to the infinite-range na-
ture of the scale-free network, we introduced the exponent 	̄
which is related to the correlation volume �or correlation
number� Nc� 
T−Tc
−	̄ near the critical point. For a system
with a finite dimension d, this would be given by Nc=
d

where 
 is the correlation length. Since 
� 
T−Tc
−	, we
would get 	̄=d	. Note also that the exponent for the mag-
netic susceptibility has been denoted as �̄ in order to distin-
guish it with the degree exponent � of the scale-free network.

The scaling functions are plotted in Fig. 2 for �=4.5 and
kav=30. When scaled, data points from simulations of differ-
ent system sizes all collapse to one single curve near Tc. The
obtained critical exponents are compared with the results of
analytic calculations in Table I. Our numerical results agree
well with analytic results for all tested parameters �16�. Simi-
lar analyses have been performed for other values of � as
well. For example, we were able to confirm that our results
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FIG. 1. The fourth-order Binder cumulant UN as a function of
temperature T is drawn for �=4.5 and kav=30. Error bars are about
the same size as the symbols. The crossing point is interpreted as
the critical point. In this example, Tc /J=34.3�0.2. This is consis-
tent with the analytic formula �1,2� Tc=−2J / ln�1−2�k	 / �k2	�,
which becomes 34.35�0.03 if we use our numerical results
�k	=30.00�0.01 and �k2	=1060�1.
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are consistent with analytic results for �=4.0 and 4.8 as well
�17�.

III. EFFECT OF QUANTUM FLUCTUATIONS

Now we will introduce quantum fluctuations to the above
Ising model by applying a magnetic field � perpendicular to
the Ising spin direction. Below we will choose it to be in the
x-direction. The Hamiltonian thus becomes

H = − �
i�j

Jij�i
z� j

z − ��
i

�i
x. �10�

Note that �i
x does not commute with �i

z. The second term can
flip local spins and this will tend to weaken ferromagnetic
ordering of Ising spins.

In order to analyze this model, we will employ the quan-
tum Monte Carlo simulation method used in Ref. �8�. In
short, our quantum-mechanical problem is mapped to a clas-

sical problem of statistical mechanics with additional time
dimension. Taking the trace in the partition function
Z���=tr exp�−�H�, the state of each spin is represented by

Si���	, where ���it� is the imaginary time and ��1 /T.
Then the whole imaginary time range 0���� is divided
into M slices of equal size and the completeness relation
�i��Si=�
Si�� j�	�Si�� j�
� is inserted at each time step
� j = �j /M�� where j=0, ¯ ,M −1. Using a simple Trotter
product formula, we obtain an effective interaction between
spins in the time direction. This formalism becomes exact in
the limit M→�. In actual simulations, M must be finite, but
we make it large enough that the result becomes independent
of its value. The typical value of M used in this study was
between 30 and 150. In general, larger � and smaller T re-
quire more time slices and more simulation time.

Figure 3 shows the transition temperature Tc as a function
of perpendicular magnetic field � for �=4.5 and kav=30. As
� increases, Tc continuously decreases and seems to end at a
quantum critical point �c. Right at the quantum critical point,
T would be zero ��→�� so that infinitely many imaginary
time slices would be needed to analyze it with the above
method. It is beyond the scope of this Brief Report to prove
the existence of a quantum critical point �18�.

The scaling functions have been again calculated for finite
values of �. They are plotted in Fig. 4 for �=20J. It is
evident that the finite-size scaling hypothesis still works very

TABLE I. Our critical exponents near the ferromagnetic-
paramagnetic phase transitions for �=4.5 and kav=30 are compared
with analytic results. ���T−Tc� /Tc is the reduced temperature.
Only negative values of � are considered for the critical behavior in
m. The analytic result of 	̄ has been obtained from the hyperscaling
relation 2−
=d	= 	̄.

Critical behavior Our results Analytic resultsa

c� 
�
−
 
=−0.3�0.1 ��−5� / ��−3�=−1 /3

m� �−��� �=0.67�0.05 1 / ��−3�=2 /3

�� 
�
−�̄ �̄=1.00�0.05 1

Nc� 
�
−	̄ 	̄=2.4�0.1 2−
=7 /3

aReferences �1,2�.
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FIG. 2. Scaling functions for �=4.5 and kav=30. �a� Specific
heat, �b� magnetization, and �c� magnetic susceptibility are plotted
using Tc=34.3�0.2. Error bars are about the same as or smaller
than the symbol sizes. The critical exponents are determined to be

=−0.3�0.1, �=0.67�0.05, �̄=1.00�0.05, and 	̄=2.4�0.1.
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FIG. 3. Transition temperature Tc is drawn against the perpen-
dicular magnetic field �. When interpolated, the curve separates the
ferromagnetic and the paramagnetic phases. The parameters used in
this plot are �=4.5 and kav=30.
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well because all points collapse to the same curve near Tc.
The critical exponents thus obtained are given by

=−0.3�0.1, �=0.66�0.07, �̄=1.00�0.05, and
	̄=2.3�0.1. Within the error bars, these values are the same
as those obtained without quantum fluctuations. We therefore
conclude that even when the universality class is nonmean-
field-like quantum fluctuations do not alter the critical expo-
nents of the Ising model in scale-free network. We have also
performed the same analysis for �=4.0 and 4.8, obtaining
similar results �17�.

IV. SUMMARY AND DISCUSSION

We have numerically analyzed a scale-free network-
connected Ising system when its critical behavior does not
belong to the mean-field universality class. The critical ex-
ponents have been obtained from the Monte Carlo simula-
tions. They agree well with analytic results, thus providing
nontrivial verification of the ansatz and approximation used
in the earlier analytic calculations.

By applying a magnetic field perpendicular to the Ising
spin direction, we have also investigated the effect of quan-
tum fluctuations to the critical behavior. Our numerical re-
sults show that quantum fluctuations reduce ferromagnetic-
paramagnetic phase-transition temperature. However, they
do not affect the critical exponents even for nonmean-field
universality classes.

Although the analysis in this Brief Report is restricted to
the range of degree exponent 3���5 where the classical
model exhibits a phase transition, it would be interesting to
see how quantum fluctuations affect the critical behavior for
��3, where the classical model does not allow a disordered
phase at any finite temperatures.

ACKNOWLEDGMENTS

This work was supported by National Research Founda-
tion of Korea Grant funded by the Korean Government
�Grant No. KRF-2008-313-C00321�.

�1� M. Leone, A. Vázquez, A. Vespignani, and R. Zecchina, Eur.
Phys. J. B 28, 191 �2002�.

�2� S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.
Rev. E 66, 016104 �2002�.

�3� C. P. Herrero, Phys. Rev. E 69, 067109 �2004�.
�4� A. Barrat and M. Weigt, Eur. Phys. J. B 13, 547 �2000�.
�5� M. Gitterman, J. Phys. A 33, 8373 �2000�.
�6� C. P. Herrero, Phys. Rev. E 65, 066110 �2002�.
�7� D. J. Watts and S. H. Strogatz, Nature �London� 393, 440

�1998�.
�8� H. Yi and M.-S. Choi, Phys. Rev. E 67, 056125 �2003�.
�9� H. Yi, Eur. Phys. J. B 61, 89 �2008�.

�10� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambride University Press, Cambridge,
2000�.

�11� P. H. Song and D. L. Shepelyansky, Phys. Rev. Lett. 86, 2162
�2001�.

�12� In order for all links to be connected, the total number of
unconnected links must be an even number.

�13� S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079
�2002�.

�14� U. Wolff, Phys. Rev. Lett. 62, 361 �1989�.
�15� K. Binder and D. Heermann, Monte Carlo Simulation in Sta-

tistical Physics �Springer-Verlag, Berlin, 1988�.
�16� Note that we have used kav=30 for the data in Fig. 2. Since

kav�2, there are far more links than are needed for a treelike
network. This implies that the approximation of local treelike
structure, which has been used in one of the analytic calcula-
tions �2�, may not be valid here. Nevertheless, both results are
in good agreement.

�17� For the method used here, the smaller � is, the longer simula-
tion time it takes to get the same accuracy.

�18� In general, the time it takes for our method to achieve the same
accuracy increases for smaller values of �.

-200 -100 0 100 200

(T−T
c
) N

1/ν
/ J

0

0.5

1

1.5

2

2.5

c
/N

α/
ν

N = 200
400
800

1600
3200

-400 -200 0 200 400

(T−T
c
) N

1/ν
/ J

0

1

2

3

4

5

m
N

β/
ν

-400 -200 0 200 400

(T−T
c
) N

1/ν
/ J

0

0.005

0.01

0.015

χ
/N

γ/
ν

(b)

(a)

(c)

FIG. 4. Scaling functions for �=4.5, kav=30, and �=20J. �a�
Specific heat, �b� magnetization, and �c� magnetic susceptibility are
plotted using Tc=30.2�0.3. Error bars are about the same size as
the symbols. We find that the critical exponents are unchanged from
the classical values in Table I: 
=−0.3�0.1, �=0.66�0.07, �̄
=1.00�0.05, and 	̄=2.3�0.1.
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